Tetrahedron Letters No. 50, pp 4541-4544. 1976. Pergamon Press. Printed in Great Britain.

PREPARATION OF SOME NOVEL RIFAMYCINS BY A FACILE INTRAMOLECULAR DEHYDRATION

Jim L. Moore and James R. McCarthy*

Pharmaceutical R&D, The Dow Chemical Co. Midland, Michigan 48640

(Received in USA 20 September 1976; received in UK for publication 25 October 1976)

Recently, 3-alkylaminomethylrifamycins have attracted the attention of biologists because of the ability of certain derivatives in this series to interrupt oncornavirus replication in infected 3T3 cell cultures.¹ In the course of developing a synthetic procedure² suitable for obtaining gram quantities of some of these derivatives³ for <u>in vivo</u> testing, we observed that 3-methylaminomethylrifamycin SV (<u>1b</u>)² was quantitatively transformed into a new crystalline material (crystallized from MeOH) on standing several days in chloroform at room temperature. The transformation of <u>1b</u> can be effected in 15 hours at room temperature with a catalytic amount of glacial acetic acid. The structure assigned this new rifamycin, on the basis of spectral and chemical evidence, is N,15-didehydro-15-deoxo-3,15-epi(methano(methylimino))-rifamycin SV (<u>2b</u>).⁴ This finding represents the second example of anomalous chemistry of the amide molety of the rifamycin molecule. Maggi, Gallo, and Vigevani⁵ isolated a zwitterionic dihydroquinazolinium rifamycin (<u>3</u>) from a MnO₂ oxidation of 3-diethylaminomethylrifamycin SV (<u>1e</u>).

Comparison of the ir, pmr, and uv-visible spectra of <u>1b</u> with <u>2b</u> confirms the structure of the dihydropyrimidine <u>2b</u>. The uv-visible absorption spectrum of <u>1b</u> shows maxima at the same values as for known rifamycin Mannich bases¹ [λ (MeOH) (max) 447 (ϵ 13,350) and 314 (ϵ 17,400)]. However, the uv-visible spectrum of <u>2b</u> is quite different and characteristic for this series,

namely, λ (MeOH) (max) 457 (ϵ 16,200), 374 (ϵ 9,400), 317 (ϵ 16,600), 282 (ϵ 12,600) and 271 (ϵ 12,700) nm, indicating that the chromophoric portion of the molecule has been altered. The ir (Nujol) of the dihydropyrimidine <u>2b</u> shows the absence of both the amide and amino NH bands, which appear as sharp spikes at 3300 and 3135 cm⁻¹ in amine <u>1b</u>. The pmr spectrum (90 MHz, CDC1₃) of 3-methylaminomethylrifamycin SV (<u>1b</u>) has a broad singlet at δ 8.2, indicative of an amide NH, which is absent in the pmr spectrum of <u>2b</u>.

Additional proof for the structural assignment of the cyclic rifamycin $\underline{2b}$ comes from the transformation of 3-aminomethylrifamycin SV $(\underline{1a})^3$ into a new product, $\underline{2a}$, and the subsequent transformation of $\underline{2a}$ into the pyrimidinorifamycin $\underline{5}$. The cyclication of $\underline{1a}$ to dihydropyrimidine $\underline{2a}$ does not proceed as readily as did the cyclication of $\underline{1b}$ to $\underline{2b}$. It requires two days in refluxing 1,2-dichloroethane in the presence of a catalytic amount of glacial acetic acid. The product $\underline{2a}$ (from MeOH when very pure) has the same uv-visible spectrum as $\underline{2b}$. Oxidation

No. 50

of <u>2a</u> to the quinone <u>4</u> was accomplished with potassium ferricyanide. Compound <u>4</u> was isolated as fine green crystals from ether, λ (MeOH) (max 439 (ε 8,000), 375 (ε 7,300), 303 sh (ε 14,100), and 272 (ε 7,400) nm. The pmr spectrum (CDCl₃) of <u>4</u> exhibited a well defined ABsystem centered at δ 4.7 (J_{AB} = 19 Hz, $\Delta \nu$ =67 Hz at 90 MHz⁷) corresponding to the two methylene protons adjacent to the 3 position. Treatment of the quinone <u>4</u> or hydroquinone <u>2a</u> with activated manganese dioxide⁸ in refluxing methanol for three hours gave N,1,4,15-tetradehydro-1,4,15-trideoxy-1,4-dihydro-1,4-dioxopyrimidino(4,5-<u>b</u>)rifamycin SV (<u>5</u>), (75%, from ether) λ (MeOH) (max) 410 (ε 7,400), 280 (ε 20,700), 265 (ε 20,600) nm. The pmr spectrum (CDCl₃) exhibited a sharp singlet at δ 9.50 corresponding to the aromatic pyrimidine proton.

Attempts to cyclize 3-ethylaminomethylrifamycin S $(\underline{1c})^3$ and the corresponding <u>n</u>-propyl analog (<u>1d</u>) were unsuccessful. Problems were encountered because of concomitant acid catalyzed loss of the 27-methoxy group and formation of a tetrahydropyran ring, between the 23 and 27 positions on the ansa chain. However, a small quantity of the cyclic propyl analog (<u>2d</u>), mp 184-7° (dec) (from EtOAc) λ (MeOH) (max) 454 (ε 17,000), 375 (ε 8,600), 316 (ε 17,700), 281 (ε 13,650), and 268 (ε 13,800) nm, was isolated from the reductive amination of rifaldehyde using Borch's reagent⁹ and <u>n</u>-propylamine when the reaction was allowed to proceed 25 days at room temperature. Additional anomalous chemistry at the 15-amido position in rifamycins will be reported elsewhere.

ACKNOWLEDGEMENT

This work was supported by a contract from the Division of Cancer Treatment, National Cancer Institute (NO1-CM-33724). We wish to thank Prof. Giancarlo Lancini, Dr. Ed Yokley, Prof. Victor Hruby and the late Mr. Don Wysong for their many helpful discussions and interest in this work.

REFERENCES

- T. E. O'Connor, C. D. Aldrich, and V. S. Sethi, Abstracts, Third Conference on Antiviral Substances, The New York Academy of Sciences, New York, NY, Feb. 1976, No. 48.
- (2) J. R. McCarthy, J. L. Moore, D. V. Wysong, and C. D. Aldrich, submitted for publication in <u>J. Med. Chem</u>.
- (3) N. Maggi, V. Arioli, and P. Sensi, J. Med. Chem., 8, 790 (1965).
- (4) All new compounds had acceptable C, H, and N analyses (\pm 0.3%).
- (5) N. Maggi, G. G. Gallo, and A. Vigevani, Tetrahedron Lett., 1763 (1968).
- (6) N. Maggi, G. G. Gallo and P. Sensi, Farmaco (Pavia), Ed. Sci., 22, 316 (1967).

- (7) K. B. Wiberg and B. J. Nist, "The Interpretation of NMR Spectra," W. A. Benjamin, Inc., New York, NY, 1962, p. 3.
- (8) Carlo-Erba Co., Italy.
- (9) R. F. Borch, M. D. Bernstein, and H. D. Durst, J. Amer. Chem. Soc., <u>93</u>, 2897 (1971).